- Debashish G, Malay S, Barindra S, Joydeep M. Marine enzymes. Adv Biochem Eng Biotechnol. 96, 189-218, (2005).
DOI:https://doi.org/10.1007/b135785 - Xiao X, Zhao W, Song Z, Qi Q, Wang B, Zhu J, Lin J, Wang J, Hu A, Huang
S, Wang Y, Chen J, Fang C, Ji Q, Zhang N, Meng L, Wei X, Chen C, Cai
S, Chen S, Ding K, Li D, Liu S, Song T, Tian L, Zhang H, Zhang Y, Xu S,
Chen J, Chen H, Cen Q, Jiang F, Hu G, Tang C, Guo W, Wang X, Zhan L,
Fan J, Wang J, Zhou C, Li L, Lv Z, Hu Y, Lin X, Mai G, Luo L, Yang T, Wang
W, Kristiansen K, Chen L, Yang H, Ni M, Gu Y, Mu F, Yang Y, Zhou J, Wang
J, Zhang WJ, Han M, Xu X, Liu S. Microbial ecosystems and ecological
driving forces in the deepest ocean sediments. Cell. 188(5), 1363-1377.e9,
(2025).
DOI:https://doi.org/10.1016/j.cell.2024.12.036 - Rewitz KF, Styrishave B, Løbner-Olsen A, Andersen O. Marine invertebrate
cytochrome P450: emerging insights from vertebrate and insects analogies.
Comp Biochem Physiol C Toxicol Pharmacol. 143(4), 363-381, (2006).
DOI:https://doi.org/10.1016/j.cbpc.2006.04.001 - Ruginescu R, Purcarea C. Plastic-degrading enzymes from marine
microorganisms and their potential value in recycling technologies. Mar
Drugs. 22(10), 441, (2024).
DOI:https://doi.org/10.3390/md22100441 - Munro AW, McLean KJ, Grant JL, Makris TM. Structure and function of the
cytochrome P450 peroxygenase enzymes. Biochem Soc Trans. 46(1),
183-196, (2018).
DOI:https://doi.org/10.1042/BST20170218 - Jiang Yuanyuan, Li Shengying. Catalytic function and application of
cytochrome P450 enzymes in biosynthesis and organic synthesis. Chin J
Org Chem. 38(9), 2307-2323, (2018).
DOI:https://doi.org/10.6023/cjoc201805055 - Zhan S, Xin G, Mian W, LU Fu-Ping, Qin HM. Structure, function, and
application of cytochrome P450 enzymes. Microbiol. China. 47(7), 2245-
2254, (2020).
DOI:https://doi.org/10.13344/j.microbiol.china.200302 - Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases.
Chem Rev. 96(7), 2841-2888, (1996).
DOI:https://doi.org/10.1021/cr9500500 - Pickl M, Kurakin S, Cantú Reinhard FG, Schmid P, Pöcheim A, Winkler CK,
Kroutil W, de Visser SP, Faber K. Mechanistic studies of fatty acid
activation by CYP152 peroxygenases reveal unexpected desaturase
activity. ACS Catal. 9(1), 565-577, (2019).
DOI:https://doi.org/10.1021/acscatal.8b03733 - Wise, C. E.; Hsieh, C. H.; Poplin, N. L.; Makris, T. M. Dioxygen activation
by the biofuel-generating cytochrome P450 OleT. ACS Catal. 8(10):
9342−9352, (2018).
DOI:https://doi.org/10.1021/acscatal.8b02631 - Dirks, T.; Klopsch, S.; Stoesser, D.; Trenkle, S. D.; Yayci, A.; Schüttler, S.;
Golda, J.; Bandow, J. E. The CYP152-family P450 enzyme CypC of
bacillus subtilis converts nonnatural substrates in plasma-driven
biocatalysis. Appl. Microbiol. Biotechnol. 109, 193, (2025).
DOI:https://doi.org/10.1007/s00253-025-13568-1 - Jiang Y, Gong P, Li Z, Li Z, Li Y, Wang B, Huang H, Peng W, Gao X, Li S.
Unexpected activities of CYP152 peroxygenases toward non-carboxylic
substrates reveal novel substrate recognition mechanism and catalytic
versatility. Angew Chem Int Ed. 64(31), e202506614, (2025).
DOI:https://doi.org/10.1002/anie.202506614 - Laursen JB, Nielsen J. Phenazine natural products: biosynthesis, synthetic
analogues, and biological activity. Chem Rev. 104(3), 1663-1686, (2004).
DOI:https://doi.org/10.1021/cr020473j - Shi YM, Brachmann AO, Westphalen MA, Neubacher N, Tobias NJ, Bode
HB. Dual phenazine gene clusters enable diversification during
biosynthesis. Nat Chem Biol. 15(4), 331-339, (2019).
DOI:https://doi.org/10.1038/s41589-019-0246-1