Semi-rational directed evolution of a Deepsea-derived P450S18 for Phenazines Construction

Functional Chemical Experiment Documentation

左侧默认图 左侧悬停图

References

  1. Debashish G, Malay S, Barindra S, Joydeep M. Marine enzymes. Adv Biochem Eng Biotechnol. 96, 189-218, (2005).
    DOI:https://doi.org/10.1007/b135785
  2. Xiao X, Zhao W, Song Z, Qi Q, Wang B, Zhu J, Lin J, Wang J, Hu A, Huang S, Wang Y, Chen J, Fang C, Ji Q, Zhang N, Meng L, Wei X, Chen C, Cai S, Chen S, Ding K, Li D, Liu S, Song T, Tian L, Zhang H, Zhang Y, Xu S, Chen J, Chen H, Cen Q, Jiang F, Hu G, Tang C, Guo W, Wang X, Zhan L, Fan J, Wang J, Zhou C, Li L, Lv Z, Hu Y, Lin X, Mai G, Luo L, Yang T, Wang W, Kristiansen K, Chen L, Yang H, Ni M, Gu Y, Mu F, Yang Y, Zhou J, Wang J, Zhang WJ, Han M, Xu X, Liu S. Microbial ecosystems and ecological driving forces in the deepest ocean sediments. Cell. 188(5), 1363-1377.e9, (2025).
    DOI:https://doi.org/10.1016/j.cell.2024.12.036
  3. Rewitz KF, Styrishave B, Løbner-Olsen A, Andersen O. Marine invertebrate cytochrome P450: emerging insights from vertebrate and insects analogies. Comp Biochem Physiol C Toxicol Pharmacol. 143(4), 363-381, (2006).
    DOI:https://doi.org/10.1016/j.cbpc.2006.04.001
  4. Ruginescu R, Purcarea C. Plastic-degrading enzymes from marine microorganisms and their potential value in recycling technologies. Mar Drugs. 22(10), 441, (2024).
    DOI:https://doi.org/10.3390/md22100441
  5. Munro AW, McLean KJ, Grant JL, Makris TM. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem Soc Trans. 46(1), 183-196, (2018).
    DOI:https://doi.org/10.1042/BST20170218
  6. Jiang Yuanyuan, Li Shengying. Catalytic function and application of cytochrome P450 enzymes in biosynthesis and organic synthesis. Chin J Org Chem. 38(9), 2307-2323, (2018).
    DOI:https://doi.org/10.6023/cjoc201805055
  7. Zhan S, Xin G, Mian W, LU Fu-Ping, Qin HM. Structure, function, and application of cytochrome P450 enzymes. Microbiol. China. 47(7), 2245- 2254, (2020).
    DOI:https://doi.org/10.13344/j.microbiol.china.200302
  8. Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases. Chem Rev. 96(7), 2841-2888, (1996).
    DOI:https://doi.org/10.1021/cr9500500
  9. Pickl M, Kurakin S, Cantú Reinhard FG, Schmid P, Pöcheim A, Winkler CK, Kroutil W, de Visser SP, Faber K. Mechanistic studies of fatty acid activation by CYP152 peroxygenases reveal unexpected desaturase activity. ACS Catal. 9(1), 565-577, (2019).
    DOI:https://doi.org/10.1021/acscatal.8b03733
  10. Wise, C. E.; Hsieh, C. H.; Poplin, N. L.; Makris, T. M. Dioxygen activation by the biofuel-generating cytochrome P450 OleT. ACS Catal. 8(10): 9342−9352, (2018).
    DOI:https://doi.org/10.1021/acscatal.8b02631
  11. Dirks, T.; Klopsch, S.; Stoesser, D.; Trenkle, S. D.; Yayci, A.; Schüttler, S.; Golda, J.; Bandow, J. E. The CYP152-family P450 enzyme CypC of bacillus subtilis converts nonnatural substrates in plasma-driven biocatalysis. Appl. Microbiol. Biotechnol. 109, 193, (2025).
    DOI:https://doi.org/10.1007/s00253-025-13568-1
  12. Jiang Y, Gong P, Li Z, Li Z, Li Y, Wang B, Huang H, Peng W, Gao X, Li S. Unexpected activities of CYP152 peroxygenases toward non-carboxylic substrates reveal novel substrate recognition mechanism and catalytic versatility. Angew Chem Int Ed. 64(31), e202506614, (2025).
    DOI:https://doi.org/10.1002/anie.202506614
  13. Laursen JB, Nielsen J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev. 104(3), 1663-1686, (2004).
    DOI:https://doi.org/10.1021/cr020473j
  14. Shi YM, Brachmann AO, Westphalen MA, Neubacher N, Tobias NJ, Bode HB. Dual phenazine gene clusters enable diversification during biosynthesis. Nat Chem Biol. 15(4), 331-339, (2019).
    DOI:https://doi.org/10.1038/s41589-019-0246-1