[1]WILLIAMS, Thomas C.; PRETORIUS, Isak S.; PAULSEN, Ian T. Synthetic evolution of metabolic productivity using biosensors. Trends in biotechnology, 2016, 34.5: 371-381..
[2]HUANG, Jin, et al. Biosynthesis of butyric acid by Clostridium tyrobutyricum. Preparative Biochemistry and Biotechnology, 2018, 48.5: 427-434..
[3]G. Linger Jeffrey, R. Ford Leah, R. Kavita. Development of C. tyrobutyricum as a microbial cell factory for the production of fuel and chemical intermediates from lignocellulosic feedstocks. Front Energy Res 8, 183, (2020). DOI:10.3389/fenrg.2020.00183.
[4]I. Bogorad, T.S. Lin, J. Liao. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693–697, (2013). DOI: https://doi.org/10.1038/nature12575.
[5]Y. Zheng, Q. Yuan, H. Luo, X. Yang, H. Ma. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources. Bioengineered 9, 209-213, (2018). DOI: 10.1080/21655979.2018.1467652.
[6]T. Yu, Q. Liu, X. Wang, X. Liu, Y. Chen, J. Nielsen. Metabolic reconfiguration enables synthetic reductive metabolism in yeast. Nat Metab 4,1551–1559, (2022). DOI: 10.1038/s42255-022-00654-1.
[7]K. Miyoshi, R. Kawai, T. Niide, Y. Toya, H. Shimizu. Functional evaluation of non-oxidative glycolysis in Escherichia coli in the stationary phase under microaerobic conditions. J Biosci Bioeng 135, 291-297, (2023). DOI: 10.1016/j.jbiosc.2023.01.002.